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Sound generation in the convection of turbulence into a flow
intake duct is discussed by examination of an Idealised problem.
Ideal fluid is in uotion with uniform low, subsonic velocity
above and parallel to a plane, rigid wall. A thin, rigid,
semi-infinite plate is parallel to the wall and the fluid flows
past its leading edge. The radiated sound is calculated for a
turbulent eddy modelled by a weak line vortex which is allowed to
convect passively past the leading edge of the plate. Account is
taken of the contribution to the radiated sound from the
disturbance produced by the convecting vortex in the boundary
layers on each side of the plate by means of Howe's (1981) theory
of displacement thickness fluctuations, the strength of the
disturbance being fixed by a leading edge Kutta condition. It is
concluded that the predicted level of the radiated sound is
substantially reduced due to the boundary layer disturbances
relative to when they are neglected. The case of the convection
of a frozen two-dimensional gust is also considered. Examination
of the analogous problem of plane wave radiation from the duct
shows that the presence of displacement waves enhanced both the
far-field intensity in the ambient fluid and the reflected field
within the duct.
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Sound produced when a turbulent eddy is ingested by a duct inflow

such as the intake duct of an engine or the entry of an exhaust

nozzle, is of interest in many industrial systems. Of concern in

similar circumstances are the sound fields which are radiated and

reflected at the entry of a flow intake duct due to acoustic

sources within the duct, such as a fan or propeller say. The flows of

interest are often of low Mach number and the characteristic acoustic

wavelength is large relative to the duct width.

The direct sound radiation from a compact turbulent eddy convected

past a rigid body can be thought of as the sound which is produced in

the absence of any interaction between the eddy and the flow in which

it is convected. It is governed by the strain-field produced by the

presence of the body, the details depending on the rate of working of

the eddy turbulent stresses in that field (Howe 1975). For instance

in the two-dimensional problem examined by Howe (1975) in which a line

vortex moves around the edge of a thin semi-infinite rigid plate, no

sound is produced if the vortex follows a potential flow streamline

around the edge; sound is only produced when the vortex cuts across

such streamlines.

In the presence of flow there are additional sound sources which are

closely related to the incident vortical (or acoustic) disturbance.

These arise because of flow/disturbance coupling at any edges of the

object where vorticity can be generated and ejected into the flow, a

process which is essentially viscous controlled. The mechanism

provides a mans of transferring energy that is well illustrated in

I.



the Impingement of a sound wave an the leading/trailing edge of a thin

semi-infinite rigid plate in a low subsonic, grazing mean flow and

respectively results in a net production/absorption of acoustic

energy. Howe (1981).

In this paper we discuss sound production by the interaction of a

vortical/acoustic disturbance with an otherwise uniform duct inflow.

Though substantial asounts of acoustic energy can be produced when the

incident flow is not self-preserving, as in the Jet-edge tone

configuration (Crighton 1984), in the cases examined here the

disturbances are assumed to be sufficiently weak that both the

disturbance and acoustic particle velocity are small relative to that

of the mean flow.

The production of sound in the passive convection of a line vortex

by a low Each number mean flow, of speed U, past the mouth of a rigid,

tuo-diensional, semi-infinite duct is examined in 12. Longitudinal

standing waves are avoided in this first analysis by considering a

duct of infinite length. A more realistic model will also require a

three-dimensional treatment to obtain predictions of the sound

produced in the ingestion of a general turbulent field by a duct

inflow. The duct is formed by an infinite plane rigid wall and a thin

semi-infinite rigid plate, parallel to the wall and a distance U above

it in the fluid. H is aused small relative to any relevant acoustic

wevelength. The ean flow Each number X = U/c (c is the sound speed)

is small and,for convenience in the analysis term of order IF are

neglected relative to unity. Thus c and the ean fluid density p can

be take. as constant. The theory presented is linear with respect to

the acoustic particle velocity.



The flow model Is Introduced In 12. 1 and the analytical problem is

formlated In 12.2. In 12.3 Howe's (1981) theory of displacement

thickness fluctuations is applied to determine the effect on the

radiated sound field of disturbances propagating in the plate boundary

layers. Physically such disturbances arise from borticity production

at the plate leading edge by the action of viscosity In response to

the unsteady velocity field of the paesing vortex. The wall boundary

layer Is presumably well-established and stable, unlike the thin

developing plate boun&- . dyers which are linearly unstable. In the

real flow. acoustic and thermal boundary layers, analogous to a

Stoke's layer, will also be present on the plate and wall (due to the

need to satisfy the no-slip condition at their respective surfaces.)

and will be extremely thin relative to an acoustic wavelength. Any

Interactions between vortex or sound shear waves, say, and boundary

layer Reynold'sa stresses will be insignificant over the length and

tim scales which characterize the interaction of the vortex with the

duct mouth and are neglected here. Similarly aerodynamic sound

generation (Lighthill 1952) by man or perturbed Reynold's stresses is

not included. Thus. It is not necessary to account for the boundary

layer on the wall and the predominant effect of the plate boundary

layer Is accounted for by Howe's (1981) displacement wave theory.

In Howe's theory, fluctuations In the displacement thickness of the

boundary layers model the effect of the disturbances In the exterior

potential flow. Here, as in Howe (1981), the boundary layers are

modelled as uniform wall flowe of speed V ( U and the fluctuations are

modelled as neutrally stable waves of constant form and of long

wavelength relative to the characteristic boundary layer thickness.

The displacement waves carry perturbation energy downstream Into flow

regions where they are dissipated by heat. viscosity or mre



realistically perhaps, breakdown into small-scale turbulence. Thus

the effective interaction region mist be close to the leading edge of

the plate. This physical assumption is incorporated into the analysis

by allowing the wave-number of the displacement waves a small

imaginary part where necessary to ensure the convergence of certain

integrals. The strength of the displacement waves, proportional to

that of the vortex, is fixed by the Kutta condition that the fluid

velocity should remain finite at the plate leading edge. Viscous

effects enter the analysis only in this indirect fashion.

Thouga the leading edge Kutta condition in unsteady flows has been

examined by Goldstein (1981,1983) the issue of its validity has not been

resolved. However Howe's (1981) application of the displacement wave

theory incorporating the leading edge Kutta condition to the jet-drive

mechanism of the flue organ pipe gives encouraging agreement with

experiment. The edges of a real duct mouth will have finite thickness

relative to the displacement wave length scale and my be rounded

rather than sharp. levertheless the mechanism controlling the

flow/acoustic interaction at the mouth will be essentially the sam as

that involving a thin plate. Goldstein (1984) shows that when a

laminar flow separates from a smooth body surface and is subject to an

external unsteady 'forcing' (e.g.,from a harmonic source), instability

waves which propagate downstream are generated and are coupled to the

source at the separation point by viscous effects. In particular for

a harmonic source the Kutta condition is satisfied at the separation
1/4

point provided that I (( S ((Re , where S. Re are respectively the

Stroual and Reynold's numbers based on the streamwise body length

scale and the upstream flow velocity. A comprehensive review of the

Kutta condition in unsteady flowm is provided by Crighton (1985).



The solution for a fourier time transform of the sound field Is

obtained in 82.4 by use of a low frequency Green's function and is

found to have two components; the direct radiation from the vortex and

the contribution from the displacement waves an the plate boundary

layers. on application of the Kutta condition we find that the total

field Is simply the direct radiation muiltiplied by a factor equal to

(I-V/U.) = .4, for a characteristic value of V/U. where U. ( U) is

the convection speed of the vortex. Thus the presence of displacement

waves substantially reduces the radiated field. Comparison of the

direct radiation is made with the solution obtained by Cannell and

Ffowcs-Villiam (1973) in the absence of mean flow for a line vortex

exhausting out of the duct. Explicit forms of the far-field due to

the line vortex, both In the duct and outside It, are obtained in S2.5

and are valid when the duct is wide relative to the displacement wave

length scale, characterised by the minimum distance of the vortex from

the plate. This shows that it makes little difference whether the

vortex moves above the plate or beneath it into the duct.

The results of S2.5 are used in 52.6 where the radiated field

produced In the convection Into the duct of an incompressible, frozen

two-dimnsional gust is discussed. The flux of acoustic energy, both

to the far-field In the duct and outside it, is calculated in £2.6.

For the 1line vortex case these fluxes are compared; the former is

proportional to 1, the latter to JP.

In £3 a low frequency plane sound wave propagating out of the duct

replaces the line vortex as the 'incident' amuid source. The

displacement wave theory outlined above Is employed. In this case the

presence of displacement waves results in an increase in both the far-

field Intensity outside the duct and the amplitude of the reflected



field within the duct. There Is experimental evidence (Davies 1987)

of such an increase in the reflection coefficient in plane wave

reflection at a flow Intake. The calculation of 33.2 reveals that the

net acoustic energy flux away from the plate leading edge is positive;

acoustic energy Is generated by the displacement thickness waves.

This is in accord with the results of Rowe (1981) for the interaction

of a plane wave with a plate leading edge and of Quinn & Howe (1986).

Appendices Al-A4 contain various analytical results.



92 Sound generation by convection of turbulence

92.1 The flow model

The problem to be considered is illustrated schematically in

figure 1. A uniform man flow of low, subsonic velocity U proceeds

along a rigid wall (at x2 = 0 in the (xix2) co-ordinate system of the

figure) and encounters a two-dimensional duct formed by a thin, rigid

semi-infinite plate at x2 = H above the wall. A turbulent eddy

modelled by a line vortex of strength i/2x convects at speed U. along

a path x2 = h. Since the flow Nach number satisfies X = U/c <1, the

speed of sound in the fluid, c, my be assumed constant and in t~e

subsequent analysis term of order *2 are neglected relative to unity.

The aim of the analysis is to provide estimates of the sound

produced by the interaction of the vortex with the duct mouth.

Besides the 'direct radiation' from the vortex there are acoustic

sources closely related to the vortex which arise when, in response to

the velocity field of the passing vortex, additional vorticity is

ejected into the plate boundary layers at the plate leading edge. The

assumed region of this interaction is indicated schemtically by the

wavy lines in figure 1. The flow region of importance to the acoustic

far-field Is asumsed to be the vicinity of the duct mouth, IIl ( B,

and should be confirmed by the results of the analysis.

The turbulent boundary layers on the wall and plate will be

extremly thin relative to the acoustic wavelengths concerned and
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Figure 1. Scbematic illustration of convection of a line vortex by a
uniform mean flow into a semi-inflnlte duct.
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Figure 2. Sketch of the idealized boundary layer model with a
displacemut save.
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their interactions with the acoustic fields produced are assumed to be

Incoherent in respect to the acoustic time and length scales of

interest. The line vortex is assumed to be sufficiently weak, compact

and incoherent with regard to the turbulent boundary layers that

additional sound fields arising from perturbed Reynolds stresses can

be neglected. Thus the wall boundary layer Is excluded and the plate

boundary layers enter the model only in relation to the leading edge

interaction outlined above.

The fluid mechanics governing the vortex is of interest only in

the effective interaction region, IXI < H where the vortex (or gust of

§2.5) is assumed to convect passively at a speed U.. Variations in U,

and curvture in the vortex path during the passage of the vortex past

the duct muth due to an image system in the plate will be snall

provided that V/I-hi << U. and are neglected. A physically realistic

convected disturbance might have a convection velocity of .5U to .8U.

The simplistic mdelling of the vortex means that the energetics of

the interaction, being of second order in the acoustic fluctuations

produced, is not included explicitly in the flow mdel. Radiated

acoustic energy produced in the interaction is balanced by a decrease

in mean flow energy or energy of the convected disturbance which in

the real flow might be expected to be apparent in higher turbulence

levels in the plate boundary layers downstream of the edge.

In addition to X << 1 further physically acceptable but limiting

assumptions enter the analysis. Since typically turbulence levels

will not exceed 10% of the man flow velocity we take u,, << U, u-

being the characteristic hydrodynamic disturbance velocity. The

acoustic particle velocity, 1I701 (0 is a perturbation potential) will

also be smll relative to U and U. OM(U. These inequalities may be



expressed as 11#1, u << U << c. The neglect of terms of order X2

relative to unity is for mathematical convenience. The assumption of

an acoustically compact interaction region should be satisfied

provided that the duct height is small relative to any relevant

acoustic wavelength, i.e. H << c/o for a characteristic radian

frequency o. Effects due to thermal diffusion processes can be

assumed to be insignificant in view of the relatively short time

envisaged for the passage of the disturbance through the region

I ZI <H.

92.2 The analytical problem

Given this modelling we consider the analytical problem illustrated

schematically ia figure 1; ideal fluid is in notion in the positive x,

direction of the (X1,X2) co-ordinate system with uniform low, subsonic

velocity U above a rigid wall at X2 = 0. A thin rigid semi-infinite

plate is at x2 = H, x, > 0 and is parallel to the wall. A line vortex

of strength V12x convects at a constant speed U. at a constant

distance h above the wall.

When visco-thermal effects are neglected the stagnation enthalpy

B(z,t), defined by

B = w + v
2
/2 (2.1)

where w is the specific enthalpy and v is the fluid velocitywill

satisfy the inhomogeneous convected wave equation (Howe, 1975);

to



[' -2t + : 2 J B(z,t) = -div((a z r). (2.2)

B is employed here as the fundamental acoustic variable. In

equation (2.2) (a = curly is the vorticity, c is the speed of sound

and may be assumed to be constant since the Xach number N = U/c of

the flow satisfies N2 (M1. In irrotational flow regions we my take

B = - At (2.3)

where # is a perturbation potential of the flow.

The source term in (2.2) will be non-zero only in vortical flow

regions, i.e. at the vortex core given by x, = U.(t-to), %2 = h

(where t. is a constant) and possibly at the surfaces of the plate

x2 = HtJ, where additional vorticity muy be introduced into the flow

at the leading edge by the passing line vortex. The vorticity of the

convecting line vortex, (h,, say is

= ( x, + U.to - U.t) 6(xs-h) e (2.4a)

where a is a unit vector out of the plane of the paper in figure I and

6 is the Dirac delta function. W, can be expressed as a superposition

of vorticity waves:

(Z. t) = J lW, (Z't. )d,

where (2.4b)

d, = (Y/2xU.) (X2-h)ex])(iwl0to-4+x,/IO])e.



Henceforth hatted quantities will denote variables in the frequency

domain and the time dependence ezp(-iot) will not be denoted

explicitly. The solution for the stagnation enthalpy, B can be

obtained by superposition of the solution, B say, associated with the

vortical field fl of (2.4b). Ve note that

W x y = (y/2x)S(x2-h)ep(iwEto+xI/U.])n , (2.5)

where & is a unit vector in the positive x2 direction of figure 1.

£2.3 Boundary Conditions

The far-field radiated sound will be calculated from equation (2.2)

with the incident vorticity field W, of (2.4b) and appropriate

boundary conditions at the plate and wall. On the rigid wall, X2 = 0,

the zero normal velocity condition requires that tB/x 2 = 0, since

from (2.3) and (2.4b), B = Iwo. The same condition applied on the

plate, x, > 0, X2 = H would lead to singularities in the velocity and

pressure at the plate leading edge, z = (0,H). The singularities

result from the idealization that viscous effects are negligible

whereas in practice viscosity acts to inhibit such singular behaviour.

The singularities are avoided here by use of Howe's (1981) theory of

displacement thickness waves. In that theory the effect on the

exterior potential flow of large scale boundary layer disturbances

(produced by vorticity generated at the leading edge) is modelled by

fluctuations in the displacement thickness of the boundary layers

emnating from the edge. Greater detail of the theory is given by

Howe (1981) where an idealized model of the boundary layer, sketched

in figure 2 and adopted here, is employed. In the model a boundary



layer wave of the form Aexp(iXxi), X = X( o ) , propagates above a

uniform wall flow of speed V with V ( U, U being the speed of the

exterior uniform flow. Howe shows that though a wide range of values

of X(w) are possible for each w. as XS-. 0 (6 Is the characteristic

boundary layer thickness) the various modes coalesce and X -
4  /V. Ve

take

X = V (2.7)

and suppose that V = 0.6U, a value suggested by the work of Bull

(1967) and Blake (1970). Thus the boundary condition at control

surfaces defined by x2 = W±8, x, > 0, just outside the thin boundary

layers an the plate is

lB/Ix = iwV(w)exp(ixx), x, > O, x2 = 1±O, (2.8)

where O(w), a measure of the strength of the disturbances in the

boundary layers, is to be fixed by the Kutta condition that the fluid

velocity is finite at the leading edge. In (2.8) it has been assued

that the condition can be applied on the surface of the plate.

6 2.4 The solution for a vortex wave

Introduce the degenerate Prandtl-Glauert transformation (in which ][2

Is neglected relative to unity)

B(z) = B(z)exp(iuUx/c 2
), (2.9)

The governing wave equation (2.2) becomes



r + 2 f* 6: t () = -div(a z )
exp(i

w gx,/c2 ) r-(2.10)

where again N2 has been neglected relative to unity. Ve define G(z;y)

as the solution of

I- + I- + 2 3 G(x;y) = -B(z-,_(2.11)

j y1 2  
Y2 2 C

satisfying

ko/y. = 0, Y . = 0, lyl <-

(2.12)

IG/Iy2 = 0, y2 = H, y ) 0,

and the radiation condition that G(z;y) should have outgoing wave

behaviour In X space for w.Iilc >) 1, and that as y, -4e with

1y21 (B, G(z;y) -# constant.exp(iwy/c). G(z;y) is calculated In

Appendix A2.

From equations (2.10), (2.11) we find

V() S=(G(;y) V24(3) - B(y3)V2G(z; ) + G(z;)div(xy)ezp(iwUy,/c2)) dV.

V (2.13)

The Integration In (2.13) is over the region of fluid " which is

encloeed by a control surface S. S consists of the rigid wall y2 = 0,

a surface y, = constant : for I y2l ( H, control surfaces at y2 = 16

t14.
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FiSure 3. Sketch of the control surfaces of equation (2.14) and the

vortex wave.
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for y, ) 0 (around the plate) and a circular arc centred on (OH) to

give a closed circuit. Application of Green's theorem to the fluid

within S gives from (2.13)

9(x) = JA.(G(X;y.)VB(y.) - BI])VG(z;]) + G(l;]j)(lwlyexpiUy,/c') )dS

S

(z x v).V G(x;y)exp(iyil/C2)) dV , (2.14)

V

where (see figure 3) n Is the unit normaI to S in the direction of the

interior of S. Noting that vortical fluid enclosed by S is that of

the vorticity wave, we find on using the radiation conditions on

G(g;y.) and the conditions (2.12) that

(2.15)

where continuity in WBI y2 acroes the plate (c.f. (2.8)) has been

used. In this equation the first integrand is evaluated at y2 - H,

the second at y2 = h. Ve have used equation (2.5) for the term

(fk x v) and the notation

4
I!= f(YOU+0) - f(y,,H-0). (2.16)



The plate boundary condition (2.8) is substituted in (2.15) and the

Prandtl-Glauert transformation (2.9) reversed to give the actual

enthalpy as

(z) = (i) + B (z), (2.17)

where

Am

Rdl() =-yexp(io(to-OUZ/c2)fexp((isly)(l+IU./Cl/U.8)G(z;yi.h)dy,

2w -.

(2.18)

B.(R) = -i 6 /ezp(-tiUx/c2f exp(iXy,+ iUy,/c2)[G(z;y) dy, . (2.19)

0

L1(z) is the direct contribution to the sound field from the

vorticity wave of (2.4b) while &.(z) i due to the disturbed boundary

layers on the plate. The Integral& of (2.18). (2.19) are approximted

by use of equation (*2.9) of Appendix £2 which is valid for positions

£ in the far-field, [ in the near-field and gives

mGz~ a(z.40ii )t

G(IL;Dy)/ YZ a(z'W.)'*6(3[)/S~y2 (2.20a,.b)



for 6lzl/c )> 0(1), ulylc (< 0(1). I is a potential function of an

Inflow into the duct (uniform when lyzi(B, yi-w ) and Is discussed In

Appendix Al. a is the function

a(Z,6) = -s(Bo(ulzi/c)ti(z~ilzi)H (IlI/c)) , (2.21a)

2c (l~iQRf(W)/c)

with

f(u) - .5772-ix/2+ln(tH/2xc). (2.21b)

(c.f (12.8),(A2.12) of Appendix A2). E6 , B are Hankel functions of
(,|

the first kind. The term Involving o is a moaopole scattered field

and that Involving is a dipole scattered field.

(i) To evaluate B(z): the direct radiation

Equations (2.20b) and (2.19) give (with results (Al.4), (A1.6) of

Appendix Al)

B.(z) = ({12%)fla(X,w)exp(iw(to-ix,lc)) , (2.22a)

where (c.f definition (A4.9) of Appendix A4)

$4 =feXP(i~t /1. ) la(l/ (1-Z) )dy , *(2.22b)

sad Z*(y,) is the lmg. of the polat y,fjb, J=(-i)O, under the

trasformetion M1.2) of Appendix Al. 76a() corresponds to the

radiated field calculated by Cassell ad PFowcm-Villiams (1973), by

Ai



mans of matched asymptotic expansions. f or the case when a vartex

exhausts f rom the duct in the absence of mean flow. its notion due to

images In the duct walls. Equation (2.22a) agrees with their results

when account is taken of the different vortex mtions, save that the

term fo) in a(j~w) of (2.21) is absent in their calculation. The

discrepancy appears to arise because of their erroneous exclusion of a

pressure variation which is unifoarm over the whole duct mouth (c.f.

equation (3.15) of Cannell and Ffowcs-Villiams (1073)).

(it) To evaluate L-(z): the displacement wave contibution

Neglecting N2 relative to unity, we find from (2,19), (2.20a) that

= iw9(w)exp(-iwx/c)a(z~wfj d~exp(ix(y1 ) d 1 . (2.23)

where now the Integration variable is the potential 1. The

displacement waves mest decay as y, -o due to dissipation by heat and

viecoeity, or breakdown into turbulence, and this is modelled here by

allowing W a small positive imaginary part (for WaO) is the evaluation

of the Integral of (2.23) to give

1%)

1.4) (Uv~w/X)Oz(-iwl/ aZG z~~,d



Coparison with (A4.5) of Appendix A4 leads to the result

B.(&) = -(uJi()B/Xx)exp(-ulxz/c)a(xI.)exp[L(-ixHI/)] . (2.24)

where

L(x) = ln(T(x)] -ilaz +x , (2.25)

and T Is the gauma function (Gradshteyn and Ryzhik 19 8
0,p

9 3 3
).

The calculation of Appendix A4 fixes iI(o) by application of the

Kutta condition that the fluid velocity remain finite at the plate

leading edge and gives (c.f.equation (A4.10))

V(w) z- i('912*)expitwto-L(~lXHl/w) ]YHU . (2.26)

On substitution in (2.24) we find

L(z) =
-(VIUL)t112)I (zu)exp(iv.4to-Iuil/c) * (2.27)

which Is valid In the far-field, ull/c )l. Comparison with (2.22)

reveals that

A A A A
B(x) = (Z) 4 5(x) = (l-/U)B(z) . (2.28)

The term containing V arises from the displacement wves so their

presence has the effect of reducing the level of the radiated mound by

Sfactor of (l-YiU.) which for a characteristic value of V = 0.613 and

U. 9 io 4"10. The reduction i greater if U. ( U and for V = U. no

sound Is radiated, as If the plate were absent. It Is Interesting to

20



compare this result with those of Bowe (1976) for the case when a line

vortex convects past the trailing edge of a thin semi-infinite rigid

plate in a low subsonic grazing man flow. Application of the

trailing edge Kutta condition required vorticity to be shed from the

edge and to convect at the mean flow velocity in a vortex sheet wake

downstream from the edge. Howe found that no sound was radiated it

the convection velocity of the vortex and shed vorticity were equal.

£2.5 The solution for a convected line vortex upstream disturbance

The stagnation enthalpy B(a,t) for the line vortex of (2.4a) is

obtained by integration of B(a) over w. Ye suppose that the duct Is

extremely wide on the hydrodynamic length scale UIw, in which case the

integral 9of (2.26b) is approximted by equation (A4.14) of

Appendix £4. Ye find from (2.22), (2.28) that

-d +c.c

(2.29)

where

t = t-to+xt,/c, (2.30)

and

K. = Il1-h/HI, I- = (li-h/H).

The difference in the integrand is to be taken between 1=1., c.c

denotes the complex conjugate of the preceding expression and we have

2.1m



used ak(",0)4a(0,- ), , (c.f.(2.21) and (2.22b)). An

asterisk denotes the complex conjugate.

(i) Far-field outside the duct

On substitution for a(z,u) from (2.21) into (2.29) we obtain

a

B(x,t) = (1-Y/i.)M*Le1+cose) I x(iY(x(s.)ep-l) scc

4w(VIJ.) {li /1H) -. (1i~tL f IsU. I)/x)

(2.31)

The asymptotic form of the Hankel functions has been used (Abramowitz

and Stegun 1964,p364). In (2.31) we have introduced L. 8 and Y;

IL = U./c, 0 = arcos(xi/lx) , Y = U.tt/H, (2.32a)

where since 9
2 

( 1

(t] = t-to-lXI/c +[x1 /c = t-to-lgl/c(l+cos(8)). (2.32b)

f Is defined by (2.21b). Owing to the exponential decay, the ajor

contribution to the integral in (2.31) is from s (< l/I., where 1. is

the minims distance of the vortex from the plate as a fraction of the

duct height. Correct to neglect of term of order (Us)
2
1n(Is) we find

after ame calculation and use of Gradshteyn and Ryzhik (1980, p573)

that

B(x,t) = b.(F(YXL)-F(YX-)),

(2.33)

Am = (1-V/V.)(/2x)L*(I+coa9).

(Ri xl iI)IU.)

IL



Here

F(t,x) = t -Ld xg(t,x)-tln(L./2x(x2 +t2 )')J (2.34a)

x 2 +t 2x dtX2+t2

and

g(x,t) = z/2 - arcos(x/{(X2 +t
2

)0). (2.34b)

Since Y and X. are non-dimensional variables, so Is F in (2.33) and

A. is of order uU, where u is the characteristic particle velocity of

the vortex. The parameter Y = I1J~Ct/H is the retarded streanwise

position of the vortex as a fraction of the duct height. The term

F(T,I.) arises from diffraction by the plate and dominates the term

F(Y,X-) (due to the presence of the wall at x 0) when the vortex

passes close to the plate. B/Aft describes the dependence of the far-

field enthalpy on the retarded vortex pasiton. As III -i aend the

vortex is far from the leading edge the enthalpy decays with

B/AR (4h/H)IIII3. Since (c.f(2.34a))

F(t,x) (t(l+NL/x)-Nll+ln(2xx 2 /NL)J/x)/x2 , t << x,

when U1t) << IH-hI and the vortex approaches Its miniuma distance

from the plate edge, B/As becomes small with

B/A. (OU.t/IH-hI)+4I)/I-h/HI.

B/Am will have a maxim/minism when the vortex ia respectively

dowstream/upstream of the plate edge and for N << 1, I 1-h/HI (< I

this occurs at Y = ill-h/HI where B/As = ±121hH. Note that the

assumption that the vortex convects approximately at the man flow

velocity relies on the assumption g/fl y/ilt-hi << U. so that the self-
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induced motion of the vortex is negligible. Consequently the results

presented here are not valid as h4O for fixed I and U.

The characteristics of B/b, discussed above are evident in

figure 4(a,b) where respectively L. = .1, .001 and B/A is plotted as

a function of Y = UJti/B, Y(1, for various values of h/H.

Figure 4(a) shows that it makes little difference whether the vortex

passes above or below the plate though the amplitude IB/Ul is

slightly greater in the former case. Figure 4(b) indicates that for

S<< 1, lB) does not depend on whether the retarded vortex position

is upstream or downstream of the duct mouth. B/hA is plotted, again

as a function of Y in figure 5 for fixed h/H = .9 and

]. = .001, .1, .2. Varying the Xach number has little effect save for

Y in the region of -1-h/HI.

(i) The far-field within the duct

In the far-field within the duct a(X,w) is given by (A2.36) of

Appendix A2 and substitution for a in (2.29), neglect of terms of

order (sH/c)
2
1n(sH/c) leads to the following erpression for B(z,t);

B(Z.t) A0 {P(Y,I)-P(YI.))

(2.35)

Ao = (I-V/U.)(1/2x)(/2)PU /H

where

P(tx) = P.(t,x)-sgn(t)P-(t,x)

P.(t,x) = q.(t,x)t Ld(q.(t,x)[In(L/8r(x
2

+t
2
))±g(t,x)]),

xdt
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Figure 4. B/IM of (2.33) as a function of L.Ith/H. h/U le &s

Indicated an each curve and (a) L 2 .1; Wb .001.
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and

q.(t.x) = [(xW4t2)" *X)/(x
2
+t

2
)] , (2.36a-c)

(c.f. Gradshteyn and Ryzhik 1980, p484 and p574). g is defined by

(2.34b). Examination of (2.35) and (2.36) shows that when T is large

and negative (the vortex is far upstream) the field in the duct is

small with B = A0 2 1IYim while when the vortex is far downstream of

the edge B 2 - Ao2(h/H)/IT1
3
1
2
, h<H and B - Ao2/IY1

2/2 h ) H. When

the vortex approaches its minimum distance from the plate,

U.[tJ/B (< i-hi, we find for lN (( 1

B/A 0  - 2({l/l-h/Hi*)-(l/(1+h/H)w .

and B/A. has a maximum. This can be seen in figure 6 which shows

B/Av as a function of U[t]/H for L =.l and various values of h/H.

As for the radiated far-field, IBI is slightly greater when the vortex

passes above rather than below the plate. The influence of X. on B/Ac

Is shown in figure 7 where h/H=.9 and N. = .0l..l,.2.

In figure 8 the dependence of the radiated and duct far-field

stagnation enthalpies on U[tI/H (respectively B/AR of (2.33) and B/As

of (2.35)) Is compared. Two values of h/H, .5 and .75, are shown and

N. = .1. The difference in the two is moet apparent at U.[t]/H = ll-h/Hl.

S2.6 Harmonic Gust

An Incompressible velocity perturbation I = (u,,u 2 ) of a convected

two dimensional gust is

,m
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z

Figure 6. B/Ao of (2.315) as a function of L.(tI/H with N = .1 and

values of h/B as Indicated on each curve.
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(2.35) (dasbed curves) with IL=- and h/H = .5, .75 as

indicated on each curve.
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-L ( C(K)/Ki[)}(-IzlK)ezp(iI z -gU.t)+il~aza), (2.3?)

"aere C(W) is a function of the ave-nu ber I = (L,,K). In the co-

ordieate system of figure I the vorticity of the gust is TU (a is a

unit vector out of the plane of the paper) and

S= C(K){K, 2
4K. 2

)/K,]ezp(iJK(z,-Ut)i+K2z 2 ) * (2.38)

(2.39)

The far-field stagnation enthalpy produced by the interaction of the

gust with the edge (0,H) of the plate can be calculated by use of the

results of 92.4 if we set

h=X2 , to=-I,/U , (2.40)

and

V = [C(I)(12+K2
2 )/K1 )exp(iKtXti[ 212 )dXd12 . (2.41)

B(g) is found by integration of the stagnation enthalpy for the line

vortex case of 92.4 over the variables 1,. 12 as in (2.39). In this

toy we obtain with (2.31)

B(g) = C(K[) (l-r/i?B(l- isg~n ([K )a(, [, U)exp(-ir, 0€dt+IzuIcJ))

2w

(exp(l[=.D)-exp(- 111 14)).

(2.42)

-- • s!|2. •.



Result (2.31), used to derive (2.45), Is valid for short vortex taves.

Thus we require 9Ul )) and neglect the fimal term in the curly

brackets of (2.45).

(1) Outside the duct, lIx))Il/IlI

From (2.21) with the asymptotic form of the lankel functions and

(2.42) m find

B(W) - IC(L)(1-V/U.)(1+cos)Lsgn(u)ep(iKU-iKU.[t)), (2.43)

where It) is defined by (2.32) with to = 0.

(it) Inside the duct, Izl))1IKII[I

From (2.45), (A2.36) of Appendix L2 we find for the far-field

eathalpy

B(z) (C(l)l-V/U.)(l-ingn(K,))exp(i2H-t[,IJ[t)) , (2.44)

2 (i[, 1B) I~ t KL~f( 1i[ .) I 

I

where It) is defined by (2.32b) with to = 0 and B = 0.

52.7 Acoustic energy flux

The flux of acoustic energy (the Blokhint2ev definition, c.f.

Blokbiatsev 1946) through a surface S i T'I may. where
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TI = f(pB + Up'B).a dS . (2.45)

p, I =(UO) are respectively the man density and velocity; the

perturbatlon density, velocity and stagnation enthalpy are p, y-. and

B. it is a unit mormal to the surface S. The adiabatic relation

between density and pressure and the linearized Bernoulli equation are

used in (2.45) to give, neglecting IF relative to unity.

rr = PfB(IE + BQ/c 2
).a dS . (2.46)

S

(i) Line vortex

The power flux through the surface S. of figure 9, a circular arc

centred on the origin vith radius R = )JI-0, is n. say where

im = pfB(v,- + I(cosB)B/c)IzIdO , (2.47)

and 0. = arsin(H/lx)--O. v. is the fluid perturbation velocity in the

radial direction and is calculated from Bernoulli's equation;

IAt= ABiA Iz . (2.48)

(2.32) and expression (2.33) for B give,where we now set U. = U,

IV-/'bt -- (1/c(14icoM(8))) )B/At . . (2.49)

Using (2.49) in (2.47) ad again neglecting IP relative to unity, we

find
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Figure 9. Illustration of the surfaces iD the far-field through which

the radiated and duct power fluxes 
are calculated.
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it.. (P/c)JB-I MI dO

0

and with (2.33) this becomes with U. = U,

Tfmi| = (3(1-V/U)
2
1
2
/2)(F(U[tI/H. I1-h/HI)-F(U[t]/H,l+h/H)]

2 
, (2.50)

where

I = p{/2x) 2 /(H/U) . (2.51)

The B dependence of (t has been neglected in obtaining (2.50) where

now It]= t-to-lxl/c. The flux through the surface S at x, = 0, x.<H,

(see figure 9) is no say, and from (2.46), (2.35) we obtain for ]<<l

r,/- (s/2)(I-V/U)2NIP(Ut]I/H,I1-h/HI)-P(UttI]/,l+h/H)] 2
, (2.52)

where It t-to-Izi/c .

In figures 10, 11. and 12 the power fluxes, normalised by I of

(2.51) are plotted in dB against Utt)/H, IU[t]/Hi<l, and V/U = 0.6.

TTo and IM are compared in figure 10(&-c) where N =.l and

(a) Il-h/HI = .25; (b) .1; (c) .01. Each curve has a singular point

because TT#.h = 0 where B/Aa of (2.36) is zero and logo(-Tt/I)4 -0.

Similarly TTo/I = 0 when B/Ao of (2.35) is zero. Over the range of

lt) shown In the figure we see that the duct power flux Is greater

than that radiated except for a period in it) > 0 which contains the

point TTo = 0 (e.g. for h/b =1.25 in figure 10(a), this range is

.31 ( UOt]/5 ( .75). The difference in the results for the vortex

passing above and below the plate (if there is any) is indicated in

each of the plots.

.*. e a~o 5 dm I iN B lqn3 '
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FIG. 10(a)

Figure 10. The norinlised power fluxes lift/N 110/N of (2.50) and

(2.52) respectively. plotted in d.B against lid t]/H with

V/U = 6 and N = 1: (a) I l-h/H1=. 25; (b). 1; (c) . 01.
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Figure 11. 10ogo(n./w) of (2.50) as a function of UEt]/E with

V/U = .6, 1=.l . h/H is indicated on each curve.
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Figure 12. 101og,.o(-n/1) (solid curves) and lOlg,.o(fo/I) (dashed

curves) plotted against U.[t3lh with V/U = .6 and N = .01,

.1. .2, as indicated on each curve.
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Figure 11 shows rTr./ for different values of h/H and again 1=1.

The peak of each curve increases as the minims distance of the vortex

from the plate iH-hi Is decreased. Though the functions F and P

(respectively of (2.34), (2.36)), appearing in the radiated and duct

power fluxes have a Mach number dependence the predominant influence

is that TT./1 varies as IP whereas lio/l is proportional to R. This

Is illustrated in figure 12 where TT/] (solid lines) and 'To/

(dashed lines) are plotted for h/H = .9 and N = .01, .1. .2 as

Indicated on each curve.

(ii) Harmonic gust

TT., TTo, defined in the preceding section, are respectively the

power radiated to the far-field outside the duct and through the duct.

In a calculation similar to that described between (2.45) and (2.50)

with B now given by (2.43), (2.44) (additionally taking real parts of

functions and averaging over a wave period 2x/K,U ) the following are

obtained:

7T. = 3pHIC([)1
2
(l-V/U)

2
1[ , (2.53)

16cg
2 1 l4iKJRf(Ks U)/zrl

2

rno = pRIC()12{1-V/U)2 (2.54)

2cx
2
KI ll+iKlHf(KU)/I1

and

"iT = T1R/llro = 3I1KIH/8

(2.55)

= 31!H ]/8c

where w = K,U is the radian gust frequency.
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93 Plane wave radiation from the duct

93.1 The far-field potential

The radiation of a plane wave, iexp(-iwt), from the semi-infinite

duct formed by the plate and wall is now discussed (see figure 13).

The incident plane wave is given by

= oexp(-iukox,/(l-.)) , ko = /c , (3.1)

and propagates upstream from within the duct. Oo is a constant and

flow quantities, such as X, p and c are as described in 92.

The total perturbation potential, Oexp(-itt) say, is the solution of

the convected wave equation ((2.2) with the right hand side replaced

by zero) which satisfies the boundary conditions

r ()exp(iXx,) , x, > 0, 12 = H±O,

1 ./ xZ= 1 , = (3.2)

and

S-4 constant.exp(ikolzl/(1+Ncos())/IZI , 11 -4. , (3.3)

0 = arcos(x,/Il),

for I outside the duct. 0 and 4lx2 must also be continuous on

x, < 0, x2 = B. The boundary conditions in (3.2) are the same as

those for the vortex which are dicussed in 92.2. The Prandtl-Glauert

, d -nm mmm m m 43
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pigure 13. Radiation Of a plane wave from the duct.
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transform of (2.9) is employed again with denoting the transform of

and 0. that of 0. where

= %oexp(-ikox.) . (3.4)

Vith the Green's function of equation (2.11) we find on application of

the Divergence theorem to the fluid in the region V sketched in

figure 3 that

O( = J ( G(x;.)V (y) - 0 (y)VG (x;y) 5. . dS , (3.5)

S

where S, the boundary of V is as described in 92.3 and sketched in

figure 3. The radiation conditions satisfied by G and # ensure that

the portion of the surface integral over SR0 the circular part of S,

is zero and that only the component j, of 0 contributes to the

integral over the surface y, =a lyl ( H. On applying the condition

(3.2) we obtain with (A2.4) of Appendix k2

0(x) = -))(a)f, G(x;)lexp(ixy,) dy, - 0o21k.HA(lz,). (3.6)

The notation If) is explained by (2.6) and G(x;y) -4 A(I,w)exp(ikoy,),

y, 4 a defines A, which is calculated in Appendix k2. The integral on

the right hand side of (3.6) arises from the presence of displacement

waves on the plate boundary layers. Ve assum that since the

displaceent waves must decay or becom incoherent as they propagate

downstream the mjor contribution to the integral cones from the

region y, <( l/X, and the Integral is evaluated by use of the



Approximation (2.20a), (G) l] which is valid for ly.1 Within An

acoustic wavelength of the plate edge, lal in the far-field. On the

assumption of short displacement waves, XH ) 1, a further

Approximation for Cf) given by (41.11) can be used in (3.6) and with

result (2.24) we find on reverting to the actual potential 0

(c.f. (2.9))

0()= -exp(-ik0I 1 o ~ ,~Wx(I)(-) + 0.21koHA(z,.)).

(3.7)

j1(w) is determined by the Kutta condition in Appendix 4., (44.16) and

a. A are given respectively in equations (A2. 12),(A. 13) of

Appendix A2 for & in the far-field outside the duct and by UA2.17),

(A2.14) when & is far downstream within the duct.

Substitution for Y(tw) gives

O()=-koHoexp(-ik.Kx,){ ((l.-R+X~l+R)a(z,w)/X) + 21A(X,(j))

(3.8)

V Is a reflection coefficient when 0 = 0 , the perturbation potential

In the absence of displacement waves and is defined by

0.(Z) -4 014x) + p.-(Z) , Z' -4 0, 1121 < H,

(3.9)

W 2 Oo~exp(Ikox,/(1tE)).

R Is determined from (3.7) by setting 11(wi) = 0 and use of results

(U2.14), (U2.15) of Appendix *2. Then comparison with (3.9) gives



R - I -lBf()l x (3.10)

where f(w) Is defined In (2.21b).

(i) The radiated field

As in (2.7) we set X 
= 

w/V. Results (A2.Sa,b), (A2.12), (A2.13) of

Appendix A2, in which the asymptotic form of the Hankel functions

(Abramowitz and Stegun 1964, p3
6
4) are substituted, give with (3.8)

and (3.10) for wixf/c 4 -

O(X)exp(- lwt)

-0o(1-i )(H/hc)f 1-(iulHf()cos8/wc)+E(l+cos8) jexp(-i(t ),

({ IU), I { +iWEf (W)/xc]

(3.11)

E (V/U)NI 4iWHRf(( )/xc1 ,(3.12)

lI+tgf (g)/xc J

where IU = t-lxl/(c(l4IcosO)), correct to neglect of term of order

N relative to unity. The far-field pressure, pexp(-iot), is found

from the linearized Bernoulli equation which gives, again neglecting

12 relative to unity, p/p -iw(1-cos)O.

The intensity of the radiated sound, averaged over a wave period

2w/w, is pl1
2
/2pc and from (3.11) we find



ip
2  (Ip,12 2(1-X)

2 koH D. , wizi/<c >) I , (3.13)

2pc 2pc J (1iIl/H)

where Dk is a directivity factor defined by

D= (1-EcosO)2) I-(it Hf(wu)co 8)/xc)4(l+cosS) [
2

1 4 i BHf(u,)/zc

(3.14)

and

1p.1
2
/2pc = p{ iI1o/(l-X))2/2 c (3.15)

is the intensity of the incident wave 0, of (3.1). In the long

wavelength lilmit we find, neglecting of terms of order (WH/c) 2

relative to unity

1A- (1-1icos){ 1-(l+cos8)ikoE-(V/U)I(2-koB(3+cosO))]) , (3.16)

JHI/c ((1.

The term involving V/U in (3.15) is the change in the far-field

intensity from that of the Ino displacezent wave case' and indicates

that for long sound wavelength the intensity is increased by an amount

which Is proportional to IL/U.

The directivity factor D Is plotted against 0* in figure 14 for

various values of kot. V/U = .6 and (a) N = .1; (b) N= .01. The

mazimsm is at 8 = 180. upstream of the duct on the wall at zz = 0.

when D. = (1+1)2. The minimum attained by D. depends on k0 B,

decreaes as k.U increases and occurs for kO1 ( 1 at 0". The results

presented here are strictly valid only for low frequencies, certainly
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FIG. 14 (o)

Figure 14. The directivity factor of the far-fitold pressure, D. of

(3.16), as a function of 8, vitk V = .6 ad (a) 1=.1;

(b) .01. The value. of k*l Is indicated on each curve.
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below the cut-off of transverse duct modes, i.e koH < a/2, but results

are shown for greater values of koH. The figure reveals that D can

become very small for values of koH > 1 and 0 close to 0". Figure

14(b) shows that between the upstream and downstream directions there

is a difference of 4 dB at k0 H = .5.

(ii) The duct field

1he far-field potential within the duct can be expressed as

0(z) = 0,(7) + 0.(Z) + #%(i) , (3.17)

where #.(z) is a reflected wave arising from the presence of

displacement waves on the plate and 0.(Z) is the reflected field in

their absence given by (3.9), (3.10). The total reflected field,

0,(z)+ b(Z) can be written as a single reflected wave with reflection

coefficient R;

0a() #b(X) = oR exp(ikoxl/{l(IO) , (3.18)

and from (3.8)-(3.10)

R= - 1 - (ikoflf(U)/K) + 2E ). (3.19)

( + + ikoHf(j)/x )

In the absence of displacement waves c = 0 and then in the long

wavelength limit R -1. In terms of pressure amplitudes with p. that

of the incident wave and p, that of the reflected field of (3.18) we

find

s-I



Ip.l/ip. = (-NI(lI )IRi . (3.20)

Experiments have been conducted at the Institute of Sound and

Vibration Research of Southampton university to measure the field

reflected at the mouth of an open pipe which has a low mean flow Xach

number inflow and white noise excitation within the pipe, downstream

of the muth (Davies 1987). Comparison with the present theory is

possible only on a qualitative level since in the experiments the

geometry is that of a circular pipe, rather than a two-dimensional

duct; the inflow is produced by suction within the pipe and is

consequently non-uniform around the mouth. Also the theory assumes

that the flow does not separate at the duct mouth whereas for a sharp

pipe entry the experimental flow consisted of a shear layer of

thickness around .2a (a is the pipe radius). A bell mouthed pipe

entry, also examined in the experiments, had smooth entry flow but its

pipe wall (of radius of order a at the mouth) does not resemble the

thin wall discussed here. Nevertheless in the latter case the

measurements of the ratio of equation (3.20), normalized by its no-

flow value are curve fitted by [(l-EI(I4N)l 9 . which Davies points

out is & eater than the value [(1-X)/(1+4)1 which a potential flow

solution would predict. The presence of coupled instability waves in

the pipe boundary layers is suggested as the cause of the enhanced

reflected wave amplitude. This explanation is in accord with the

present analysis which from (3.12), (3.19), (3.20) gives the ratio as

(lE(1 2{V'U)] -- [ (1-)/(1+1)J(vu)

(141)



(1W and {k0 H)
2 

are neglected relative to unity). This prediction of

the ratio is, for V/U = .6, such greater than that of the experiment

but shows that flow/acoustic interaction at the duct mouth can explain

the increase in the reflected field.

3.2 Acoustic energy

Equation (2.45) gives the instantaneous acoustic energy flux through

a surface S. Here we discuss the time-averaged, i.e. averaged over a

wave period 2w/ta, power flux away from the plate leading edge. The

flow of acoustic energy through the surface S, sketched in figure 9

and defined by x, = L >> c/w, Ix21 < H, is To. The perturbation

field at S is given by equations (3.17)-(3.19). Restoring the time

factor exp(-iL-t), taking real parts of functions and averaging, yields

T = - r{l(1Ri2), (3.21)

where1TT, is the power flux of the incident wave #. of (3.1) and

r, = ptl 0.12k 0 H/2 . (3.22)

Calculation of IR 1
2 

from (3.19) correct to second order in koD shnws

that

"T'/fl, - -2kH{ 1-koE - 2(V/U)Xt-2 .oHl/k0 H ) , koE << 1. (3.23)

The time-averaged flux through 5, of figure 9 (a circular arc centred

on the origin with koixi > 1) -iTR say, is found in a similar manner

using (3.11) and (3.12);

s3



-/Ti1T = 2koH Il+E1
2 +IE-ikoRf(c)/x12 /2 ) ( (3.24)

I 1 + ikoHf(4)/XI
2

where E is defined by (3.12) and f by (2.21b). In the limit koH 4 0,

neglecting W relative to unity, this becomes

f'lR/T - 2kH ( 1-kH +2](V/U) ) . (3.25)

In the long wavelength limit the net flux of acoustic energy away from

the plate edge is from (3.23) and (3.25)

-TT, + TT. = T]T,41(V/U)( 1-koH ) , kH << 1. (3.26)

Acoustic energy is not conserved due to the presence of displacement

waves on the plate boundary layers and (3.26) shows that for low

frequencies the total flux away from the plate is positive; sound

energy is produced by the flow acoustic/interaction at the plate edge.

In figure 15 the radiated and duct energy fluxes normalized by TI,

and respectively of (3.21), (3.24), are plotted in dB against koH for

V/U = .6. Also shown is a transmission factor TIT = nif/ITToI, which

is the radiated power as a fraction of the duct power flux. Though

the results are valid only for koH << */2 a much greater range is

shown in figure 15(a) where X = .1. A more detailed picture of these

results for koH ( 1 is given in figure 15(b). Singul'ar points in the

curves for To and TTT are evident at koH - .1. This Is where

JR12 = 1 in (3.21) and T7 = 0. For koH < .1 the net duct energy

flux is positive in the direction of the reflected field, i.e. in the
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FIG. 15 (a)

Figure 15. The normlized radiated and duct power fluxes, lf and

n o of (3.21), (3.24) respectively, plotted in dB

against kob with VIU = .6 and (a) N = .1, koH ( 4.;

(b) N = .1, k0H ( 1.; (c) N = .01, kH ( 1.
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direction of the inflow, while for koH ) .1 the net flux is in the

incident wave direction. The corresponding results for I = .01 are

shown In figure 15(c). Figure 16 shows that the net flux of acoustic

energy away from the plate edge, TIR + 
T

ID, normalized by M is

positive as Indicated by (3.26).

V/U 6

.4

.01

02 4 6 8 1.0

koH

FIG. 16

Figure 16. The net normalized power flux away from the duct mouth

(rT.+rno)/T,, as a function of kaf with V/U = .6 and

W-- .1, .01 ar indicated on each curve.



Conlusions

The production of sound when a weak line vortex is convected into a

semi-infinite two-dimensional duct by a low Inch number nan flow has

been examined by uee of a low-frequency Green's function. Howe's

theory of displacement thickness fluctuations was applied to model the

effect on the radiated sound field of disturbances which are produced

by the interaction of the vortex with the leading edge of the duct

wall and which propagate in the thin boundary layers emnating from

the edge. The strength of the disturbances is fixed by the Kutta

condition applied at the leading edge and it is found that the

presence of displacenent waves reduces the radiated pressure field by

a factor of about 4/10 compared to the case in which their presence is

ignored.

The duct width, R, is assumed smll relative to the characteristic

acoustic wavelength d/X, where d is a vorticity length scale and X is

the flow Each number. Analytical expressions are obtained for the

far-field, both within and outside the duct. From this solution we

find the radiated field produced when a frozen harmonic gust is

convected by the duct inflow.

The instantaneous power fluxes of the duct and radiated fields,

produced by the interaction of the line vortex with the duct mouth,

are compared. Ve find that the foraer is of order VXI whereas the

radiated power flux, an order of magnitude smaller, is proportional to

12F (1/2w is the vortex strength).

The radiation of a plane wave from within the duct has also been

examined. The net flux of acoustic energy away from the duct mouth is

found to be positive due to a production of acoustic energy by the

displacement waves.
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Figure captions

Figure 1. Schematic illustration of convection of a line vortex by a
uniform wan flow into a semi-infinite duct.

Figure 2. Sketch of the idealized boundary layer model with a
displacement wave.

Figure 3. Sketch of the control surfaces of equation (2.14) and the

vortex wave.

Figure 4. B/A. of (2.33) as a function of Udlt]/H. h/N is as

indicated on each curve and (a) X. = .1; (b) .001.

Figure 5. B/I of (2.33) plotted against U.It]/H for h/H =.9 and

L. = .001, .1, .2 as indicated on each curve.

Figure 6. B/Ao of (2.35) as a function of Udtt]/H with L = .1 and

values of h/H as indicated on each curve.

Figure 7. B/Ao of(2.35) plotted against Uc(t]/H for h!H = .9 and

II = .01, .1 . .2.

Figure 8. Comparison of B/An of (2.33) (solid curves) and B/A0 of

(2.35) (dashed curves) with L=.1 and h/H = .5, .75 as

indicated on each curve.

Figure 9. Illustration of the surfaces in the far-field through which

the radiated and duct power fluxes are calculated.

Figure 10. The normallsed power fluxes 1t./I, lb./N of (2.50) and

(2.52) respectively, plotted in dB against UEt]l/H with

V/l = .6 and X = .1: (a) II-h/Hl=.25; (b).l;

" "a -mm nm nna au, l n u



(C) . 01.

Figure 11. l1oglo Ml/1) of (2.50) as a function of Ut/H with

V/U = .6, X=.1 . h/H is indicated on each curve.

Figure 12. lOlogo(f-R/N1) (solid curves) and l0logio(lo/1) (dashed

curves) plotted against U[t/li with V/U = .6 and N = .01,

.1, .2, as indicated on each curve.

Figure 13. Radiation of a plane wave from the duct.

Figure 14. The directivity factor of the far-field pressure, DR of

(3.16), as a function of 0, with V/U = .6 and (a) X=.1;

(b) .01. The value of koH is indicated on each curve.

Figure 15. The normalized radiated and duct power fluxes, n",R and

IT. of (3.21), (3.24) respectively, plotted in dB

against .,H with V/U = .6 and (a) N = .1, koH 4 4.;

(b) N = .1, koff ( 1.; (c) X = .01, koH ( 1.

Figure 16. The net normalized power flux away from the duct muth

(TTR+rTo)/T1], as a function of koH with V/U = .6 and

N= .1, .01 as indicated on each curve.

Figure 17. The transformation Z of equation (A11).

Figure 18. Sketch of the regions 1-3 around the duct.

Figure 19. Sketch of the flow of equation (A3.4)



Appendix Al Calculation of a flow transformation andjl

The Green's function of (2.11) of the main text, G(x;y) is

calculated in Appendix A2 for X in the far-field. Then when y is in

the near-field of the duct mouth (BB' of figure 17) G(z;y)

approximates the potential of an incompressible flow into the duct.

Thus the potential j and stream function of the potential flow into

the duct which has a uniform velocity of unity in the positive x,

direction at x, = -, Ix21 ( H, are required in the calculation of the

far-field stagnation enthalpy and are discussed below.

The mapping of the z plane (z=x1,+Jx2 and J is the complex imaginary

number (-1)
) 
consisting of two semi-infinite planes defined by X2

±H, x, ) 0, in the (x,,x 2 ) co-ordinate system in figure 17 to the

upper half of the Z plane, also sketched in the figure, is found from

the Schwarz-Christoffel transformation (tilne-Thompson 1968,9I0.2);

dz/dZ = K(Z
2
-l)/Z , (Al.1)

which gives on integration (with the complex constant K and that of

the integration chosen so that the pnints (0,+H) are mapped to (±I,0)

in the Z plane)

z = (H/x)( Z
2 

-1 -ln(Z
2
) +Jx ) . (Al.2)

A uniform flow of velocity 1 at xt-4m, Ix2 1( H, is equivalent to a sink

at the origin of input 2H taken over an angle x and therefore of

strength 2ffx. The complex potential of this flow is w and
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Figure 18. Sketc h of the regioUS 1-3 around the duct.
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w = -12H/x)ln(Z) +JH , (Al.3)

and re-arrangement gives

Z = +Jerp(-xw/2H). (Al.4)

Substitution for Z in (Al.2) yields

z = (H/X)(-l + exp(-XwwH) + wn/H) (Al.5)

The fluid velocity ji 
= 

(u,v) is found from u-jv dw/dz and

dw/dz = l/{I +exp(-xw/H)) . (Al.6)

Equating real and imaginary parts in (Al.5) with w we find

X, = ,Hl/0-1, fIr/H) - cos(-I/H)exp(-4/H) 1

(Al.?)

x2 - (H/i)( (+/H) + sin(J/H)ezp(-4/H) 41

on X, 0, r- = ±H, i is constant and ±H. As x,-i- with

1221 < B examination of (Al.7) shows that 4 X1. As I
1

l a outside

the duct region of figure Al we find

f 4- (H/x) ln(IIlx/H) (Al.8)

Expansion of the exponential factors in (Al.7) for a << H/l with

xH = =If leads to

to nn~nnnm~n m n a



x,= (H/2x)(/H)2f{ 1+ O(XJ/H)) , a ((H/ (A1.9)

Thus

-- -(±{2Hix,/w1 ) , xz = H±O, 0 < x, << tilw , (AI.)

where the upper/lower signs correspond. The disconinuity in 0 across

the surface x2 H, x, > 0, is approximated by

[JL 2(21Hx,/.) , x, (( H/X. (Al.11)

A2 rp j calculation

Define G(z;y) as the solution of

+ - t o } G(Z;y) = -6(X-y) . (A2. 1)

[y, yz c2

which satisfies the boundary conditions

0 y2 = 
0, ly <a, (A2.2)

dG(x~yiAY2 =

0, y2 = H, yI > 0 . (A2.3)

and the radiation condition that for ky/cl >> 0(1), G(X;y)exp(-iwt)

should have incoming wave properties with

G(x;y) -1 Aexp(iay,/c) , y, -i a, ly l < H. (A2.4)



In y space G(z;y) represents a source with position x and will be

calculated for JZI in the far-field. The boundary condition (U2.2)

will be satisfied by placing an image of the semi-infinite plane at y2

= -H, y, > 0, and an iage source at x = (xi,-x 2 ) and requiring

instead that "G(x;y)/y2 = 0 on the image plane. The flow-field

around the duct formed by the two planes is divided into three regions

(see figure 18). In region 1, wlyl/c << 0(1). while wyl/c > 0(1),

ly2l < H in region 2 and in region 3 lwy/cl > 0(1). We consider both

the case of X in the far-field outside the duct and within the duct.

(i) K in the far-field outside the duct

Region 3 : The function G(z;y) will take the form

G(x;y) - G.(z;y) + G,(Z;y)

where ior lux/ci >>I

G.(x;y) = {i1/4)( Ho(lz-y/c) + Ho( l -y/c)

and (A2.6)

Gy (z; Y) = 0 HO (WI Xi/c).

( ,)

IIo(x) is a Hankel function of the first kind and P is an unknown

function of z, The function G (X;y) is the solution of (U2.1) when

only a plane at y2 = 0 is present while Gf(z;y) arises from the

presence of the plates and is the far-field produced by the

scattering of G. (z;y) by the plate edges, As In/cl -t 0,

. . .. J . | L_ l| Im III mmm B•



G.(z;y) -ia+ by,

and (A2.7)

Gzj -4 {2pIz)( iln(wIyI/c) + *(.5'l?2-iln2)12)

where

a = {iI2)HL(.WIIc), b ={iujx,/2clxl),(rjlZl/c) , (2.8a,b)

(c.f.Abranowitz and Stegun 1964, p360).

Region 1: Here loy/cl (< and the wave equation (U2.1) is approximanted

by the Helahlotz equation;

+';, 2 G(x;y) =0. lIz >> lyl.

G(x;y) will be of the form

G (z; y) =a + by, + to (y) + r, (A2.9)

where a, r are as yet undetermined functions of x and f(y) is the

potential of an incompressible flow which satisfies '4%. = 0 an

y2=±H, y, >0 and as y, -4 a, jy21 < H, o 4 y.i is calcu;ated in

Appendix Al (equation (Al.?). Xatchng the far-field form of (42.9)

with the 'outer field' of (42.6) gives with (U2.?) and result (41.8)

of Appendix Al

20fila(wIyI/c)+vI2 +i.5?72-iln2) =a{-HlnWelyIc)4fHlnWuH/wc))4 to

(42.10)



Region 2: G(Z;y) takes the form given in (A2.4) and another equation

is obtained by matching the near-field form o! that equation to

G(z.y) of region I given by (A2.9) in the limit cy,/c • U. In this

way we obtain

a + by, + cy, + r = A(+iwyi/c) . (A2.1l)

The equations (A2.10), (WA.D1) determine a, 0, r, A in terms of the

functions a and b given in (A2.8). We find

a = (-bfti(a/c)/(1-ti( H/xc)f(L))) , (2.12)

and

= ialH/2 r = -aHf((o)/K , A (a + b)/I{ic/c). (U2.13)

where

f(=) .5772 + ln((j/2xc) - ix/2.

(ii) I in the far-field within the duct

In a calculation similar to that outlined in (M) above we obtain for A

of (A2.4)

A Q + iexp(-iwx/C)(2,.H/c) (U2.14)

and

Q = -Nexp(tox,/c) , = -{1-i(Hf(,-)/xc) . (L2.15ab)

2tc.H/c (1 + ifIf((j)/xc)

In region 1 we find that

G(z;y) = 4(y) + r(K), (A2.16)

G 30][



where now

= (iuB/c) + exp(iox,/c)/2H = 1. exp(imtx,/c) , (A2.17)

H{I+ ifjHf (w)/xc)

and r(z) is a function of & which is not needed in the calculation of

the min text.

Appendix A3. Couplex potential 1roX n lri ne=A

Define Z(Z;y,) as the solution of

_ P +i d G(X;y, = 0 (A3. 1)

X,- Ix Sx,

which satisfies

6 (x,-y,, - 2 -tO, x, ) 0,

GIx 2 = ~(W3. 2)

O, x ! 0 , Ix'I <

For waIi/c (( I and neglecting convection by the mean flow since N<I(1

(A3.1) becoms

2 G(z;y,) = 0 . wIx,/c (< 1. (3.3)



if also wl~yiI/c << 1, Z(x;y) represents a line source of strength

*I/x respectively on the upper/lower side of a rigid plate with a

rigid wall a distance H below (see figure 19) in an incompressible

fluid. In the Z plane (c.f. Appendix Al, (Al.2)) we find that

G6(x;y) =Re{V0 (x;y,) + a , wixi/c, wly.I/c << I , (A3.4)

where

V. l ln1 Z
2
-Z.2) + )ln(Z

2
) .(A3.5)

)and a are constants. The term in X~ accounts for flow at x,

1x21 < H and Z. are the images of the points y,+jHIO in the Z plane.

At the plate leading edge, x=(0,H), Z = 1. We find from MA.5)

dZ Z=l x Q~-Z.2)(-Z~ (A3.6)

For y, values within a few duct widths of the duct mouth X~ is small

and has been neglected in WA.6) where the remaining terms. are (c.f

Appendix Al) of order {x~H~ for y, << H. The component of the

perturbation potential due to the presence of displacement waves on

the boundary layers of the plate at x. = 11±0, x, > 0 can. in view of

(A3.1), (A3.2) and equation (2.8) of the main text be expressed as a

complex potential, Yb say, in the near-field of the plate leading edge

With

V. = (Ow)fV.(z;7)expQiXyi-i~at) dy, , wlxl/c << 1. (A3.7)
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Figure 19. Sketch of the flow of equation (A3.4)
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Appedir A4. Ia etermine 11(ta) by-applica&tion of the Kutta conkdition.

The perturbation potential due to the vorticity wave w. ((2.4b) of the

wain text) will, in the vicinity of the plate edge (0,11). approximate

that of an incompressible flow which has a complex potential V.. where

V. -j Vw {x~ot.M Z-Z 0  ep(iejy,/U.)dy,

2x42xW.) E-ZOe

-j V x~tit- I Z+ZO jexp(iujy,/U,)dy, (A4.1)

2x(2xU,) lZ+ZO.

Z. is the i mage of the point y,+Jh under the mapping (Al.2) of

Appendix Al. The second integral on the right hand side of (A4.1)

accounts for the image of the vortex wave in the wall at X2 70. The

total potential in the vicinity of the edge (0,H1) has complex

potential V say, where from Appendix A3. (A3.9) and (A3.4)

V =V. + V... (A4.2)

V, arises from the boundary layer displacement waves while V. is due

directly to the vorticity wave. The fluid velocity at the leading

edge of the plate is

V I d 1 (V. + V.,) dZ

- I(z/2iHfd(V. 4 V0i/dZ)/1Z
2
-lflIZ=l * (A4.3)



(cf. (AI.2) of Appendix Al). For the fluid velocity to remain finite

at the edge we require that

d( VW. + V. )IdZ =0 , Z 1.(A4.4)

From equations (A3.6), (A3.9) of Appendix A3 we obtain for lm(X) > 0

where the integration variable is the potential o and (A1.4), (Al.6)

of Appendix Al have been used. With (Al.?) of Appendix Al and

Gradshteyn and Ryzhik (1980, p308) we find

where

L(x) =inTix) -xlnx + x .(A4.7?)

T(x) is the gamma function (Gradshteyn and Ryzhik 1980, p93
3
).

Differentiation of (A4.1) gives

dWIj= (2/zU.)(V/2x)erp(iu(t.-t)4jh (A4.8

where



la(f) denotes the imaginary part of f and Z0 is the image of yifjh in

the Z plane. Condition (A4.4) becomes with (A4.?), (A4.8)

)W) = (I/2HU )exp[lcts-L(-ixH/*)]) (A4.10)

ToWealuate

Note that (c.A. Appendix Al, (A1.4), (A1.6))

= T(W) + T*(- ) , (A4.11)

where

T(w) = -iexp(wh/O )fd- exp(iwz/U,)dz. (A4.12)

w is the complex potential of Appendix Al. T is evaluated as an

integral in the complex z plane of figure 17 and with (Al.?) of

Appendix Al and Gradbhteyn and Ryzhik 1980 (p3070 p942) we obtain

) -i(H/w)exp[L( iuH/ixU.)sinh(uh/U.)exp(-4H/U,) , h ( H,

i(H/x)explL(-ijH/xU.)Jsinh(uH/0J)exp(-uh/U.) , h> H

(A4.13)

In the limit wH/11O >) 1, when the duct height is extremely large

relative to the hydrodynamic length scale O,/w, use of the asymptotic

form of L (c.f Gradshteyn and Ryzhik 1980. p940) gives for w > 0

4b



(1-i)(UH/e)sinhb(h/U)exp(-wh/U,) , h > H,

(A4.14)

correct to neglect of terms of order (U/tH) relative to unity.

CalculaioniI n Wwvrit

In the case of a long wavelength sound wave radiating from the duct

the perturbation potential in the absence of displacement waves is 0.

and in the vicinity uf the leading edge of the plate It can be treated

as the potential of an incompressible flow. The complex potential of

this flow will be of the form pW(z), where w(z) is given by (AI.3) of

Appendix -I and represents flow into the duct which becomes uniform

with speed unity well within the duct. p is chosen to match the near

field of the x, velocity of the incident and reflected waves, 0,+0, of

(3.9), i.e. p 
=

(%,+#.)I x in the limit kLx, 1 0. leglecting order

IF relative to unity we find from (3.9), (3.1) of the win text

p = -iks,{l-R+X(R4Il)). (A4.1b)

(w) is found from condition (A4.4) and (A4.7) with V now equal to

pw(z) and (c.f(A1.3) of Appendix Al)

dd i2pH/a

dZ 1

We find for YlW)
VWu) = -(1-i)p(XIlH)/2

i(I-i)ko4o(IXIH)(I-R+*(1iR))/2 . (A4.16)




